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Abstract: Appropriate inference of population status for endangered species is extremely important. Using a single model
for estimating population growth rates is typically inadequate for assessing endangered species because inferences based
on only one ‘‘best’’ model ignore model uncertainty. In this study, the endangered dromedary pearlymussel (Dromus dro-
mas) in the Clinch and Powell rivers of eastern Tennessee, USA, was used as an example to demonstrate the importance
of multiple models, with consideration of environmental noises for evaluating population growth. Our results showed that
more than one model deserves consideration in making inferences of population growth rate. A Bayesian model averaging
approach was used to make inferences by weighting each model using the deviance information criterion. To test the un-
certainty resulting from model selection and the efficiency of the Bayesian averaging approach, a simulation study was
conducted on the dromedary pearlymussel populations, which showed that model selection uncertainty is very high. The
results of these tests lead us to recommend using Bayesian model averaging to assess population growth status for endan-
gered species, by balancing goodness-of-fit and selection uncertainty among alternate models.

Résumé : Il est extrêmement important de déduire de façon appropriée le statut démographique des espèces menacées.
L’utilisation d’un seul modèle pour estimer les taux de croissance démographique ne suffit généralement pas pour évaluer
une espèce menacée parce que les déductions tirées d’un seul « meilleur » modèle ne tiennent pas compte de l’incertitude
du modèle. Dans notre étude, nous utilisons la moule nacrée dromadaire (Dromus dromas), une espèce menacée, des riv-
ières Clinch et Powell dans l’est du Tennessee, É.-U., comme exemple pour démontrer l’importance des modèles multi-
ples, qui tiennent compte du bruit environnemental, pour évaluer la croissance de la population. Nos résultats montrent
qu’il est nécessaire de tenir compte de plus d’un modèle lorsqu’on veut déduire le taux de croissance d’une population.
Un modèle bayésien utilisant la méthode de la moyenne nous a servi à faire des déductions par pondération de chacun des
modèles d’après le critère d’information de l’écart à la moyenne (« deviance information criterion »). Afin de vérifier l’in-
certitude associée à la sélection des modèles et l’efficacité de la méthode bayésienne par calcul des moyennes, nous avons
fait des simulations des populations de moules nacrées dromadaires qui montrent que l’incertitude reliée à la sélection des
modèles est très élevée. Les résultats de ces tests nous amènent à recommander l’utilisation du calcul de la moyenne des
modèles bayésiens pour vérifier le statut de croissance des espèces menacées en équilibrant la précision de l’ajustement et
l’incertitude de la sélection au sein des différents modèles de rechange.

[Traduit par la Rédaction]

Introduction

Freshwater mussels are long-lived species, with maximum
life spans typically between 15 and 50 years depending on
species. Many of the 18 species of freshwater mussels listed
as endangered in the Clinch and Powell rivers in eastern
Tennessee were once widespread and abundant throughout
the Cumberland and Tennessee river drainages (Parmalee et
al. 1980). However, these species experienced severe popu-
lation declines during the 20th century; therefore, many of

them have been under federal protection and management
since 1976 (Terwilliger 1991). Concerns for current status
of endangered mussel species are rising. For example, range
reductions of some species may still be occurring even
within the Clinch and Powell rivers (Ahlstedt and Tuberville
1997). A study of the population trends and growth rates of
these endangered mussels is necessary to assist with their
management and restoration.

The traditional exponential growth model, which analyzes
the relationship between relative population abundance and
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time for estimating population growth rates, can be inad-
equate for evaluating population status of endangered species
because this model assumes that population growth rate is
constant over time and that noise is stationary. That assump-
tion can be violated by large environmental changes or strong
and weak yearly recruitment, which are often observed for
aquatic invertebrate species. Previous studies of aquatic in-
vertebrate populations have often selected only one ‘‘best’’
model to interpret the observed data. That approach either
does not consider other possible models to explain the data
or ignores the uncertainty in model selection, leading to over-
confident inferences and decisions that are more risky than
expected (Draper 1995; Burnham and Anderson 2002).

Many aquatic species show strong and weak periods of
recruitment that may relate to patterns of regime shift and
recruitment autocorrelations (Glantz 1992; Beamish et al.
1999). Recent research has related these phenomena with
the noise in nature. The classification of noise by spectral
density is given ‘‘color’’ terminology, with different types
named after different colors. White noise means a constant
spectral density and temporally uncorrelated noise signal.
For colored noise, the spectral density changes with chang-
ing frequency, and the noise signal is autocorrelated (Halley
1996; Petchey 2000). Noises in nature may be colored rather
than white in many cases (Caswell and Cohen 1995; Halley
1996; Vasseur and Yodzis 2004). Colored noises have more
serious implications for endangered species (Halley and Ku-
nin 1999; Morales 1999; Schwager et al. 2006).

We based our analysis on the commonly used exponential
growth model, which implies white noise (also called regres-
sion model by many freshwater mussel biologists), and then
developed four additional models to simulate the colored en-
vironmental noises and explore the range of model uncer-
tainty in relation to the population dynamics of an
endangered mussel species. The four models were as fol-
lows: (1) residual autoregressive model, the residuals of the
exponential growth model are assumed to be autocorrelated
to simulate the colored environmental noise (Morales 1999;
Schwager et al. 2006); (2) population growth autoregressive
model, the population growth rates in the exponential
growth model are assumed to be autocorrelated to simulate
the colored environmental noise (Morales 1999; Schwager
et al. 2006); (3) population growth random-walk model, this
is a special case of the autoregressive model with fewer pa-
rameters (Peterman et al. 2003); and (4) hierarchical expo-

nential population growth model, population growth rates
are assumed to follow a multilevel structure to simulate the
hierarchy of growth rates, which has been discussed relative
to regime shifts, changes of productivity regimes, etc.
(Beamish et al. 1999; Clark 2003).

In this study, we investigated the population growth rate
of the endangered dromedary pearlymussel (Dromus dromas)
in the Clinch and Powell rivers from 1979 to 2004. Dromus
dromas inhabits shoals of coarse gravel and sand in medium
to large rivers of the Cumberland Plateau and Southern Ap-
palachian Mountains (Ortmann 1918). It has a maximum age
of about 25–30 years (Jones et al. 2004). Historically, this
species was widespread and abundant throughout the Cum-
berland and Tennessee river drainages and was one of the
most abundant species in aboriginal shell middens along
these rivers (Morrison 1942; Parmalee et al. 1982; Parmalee
and Bogan 1998). It experienced severe declines in popula-
tion abundance and distribution during the 20th century and
was listed as an endangered species by the US Fish and
Wildlife Service in 1976 (Terwilliger 1991). Currently, only
158 km of the Clinch River and 79 km of the Powell River,
less than 10% of the historic range, contain reproducing pop-
ulations of D. dromas (Parmalee et al. 1980; US Fish and
Wildlife Service (USFWS) 1983; Jones et al. 2004).

We used a Bayesian approach to solve the different time
series models for population growth rates. A Bayesian ap-
proach has advantages in dealing with time series models,
using observations to update prior models of process noise,
measurement noise, and state variables. A deviance informa-
tion criterion (DIC) was used to compare the different mod-
els and was further applied to weight the different models to
provide a predictive posterior distribution of population
growth rates (Hoeting et al. 1999; Spiegelhalter et al. 2004).

To test the efficiency of the Bayesian averaging approach
and the uncertainty resulting from model selection, a further
simulation study was done based on the endangered drome-
dary pearlymussel. Our ultimate goal was to find an appro-
priate method to assess population growth status of this and
other endangered mussel species. The framework developed
here can be used to estimate population growth rates of
other rare species.

Materials and methods

Data were obtained from mussel surveys taken in 1979,

Table 1. Density of the dromedary pearlymussel (Dromus dromas; numbers per square metre) under survey by the US Geological
Survey.

Year

Site (Tennessee)
River
mile

Sample
size 1979 1983 1988 1994 1999 2004

Clinch River (Swan Island) 172.2 40 0.1 0.1 0.1 0.8 1.5
Clinch River (Brooks Island) 183.8 26 0 0 0 0.46 0
Clinch River (Kyles Ford) 189.6 41 0 0 0 0.39 0.2

Total Clinch (sample weighted average) 0.0374 0.0374 0.0374 0.5603 0.6374
Powell River (Buchanan Ford) 99.2 40 0 0.1 0 0 0.1 0.1
Powell River (McDowell Schoal) 106.7 40 0.1 0.1 0 0 0 0.1
Powell River (Bales Ford) 111.8 20 0.2 0 0.2 0.2 0.2 0
Powell River (Fletcher Ford) 117.3 42 0 0 0 0 0.1 0

Total Powell (sample weighted average) 0.0564 0.0564 0.0282 0.0282 0.0859 0.0563
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1983, 1988, 1994, 1999, and 2004 (Ahlstedt et al. 2005). A
0.25 m2 quadrat was used to collect samples at designated
locations in the Clinch and Powell rivers. The densities and
sampled numbers of mussels per 0.25 m2 in different survey
locations were recorded, and the sample-weighted mean pop-
ulation density in the Clinch and Powell rivers was calcu-
lated (Table 1; Fig. 1) according to the following equation:

ð1Þ weighted mean ¼

X
i

meani � sample numberi

X
i

sample numberi

Only six time points were collected over a 26-year per-

iod, but each time interval is a fraction of life span (25–
30 years) for this species (Ahlstedt et al. 2005). Thus, it
is reasonable to analyze population trends through esti-
mates of absolute population growth and assume that po-
pulation growth rates are constant between survey time
intervals.

Models used
The different models, including the Bayesian model aver-

aging approach, were each implemented to detect the abso-
lute population growth rate over time and to assess
population status. In other words, was the population in-
creasing or decreasing over the 26 years from 1979 to
2004? In all of the models, we did not consider a density-
dependency effect because of the low densities observed
over the 26-year period.

The first model used was the exponential growth model
(EG):

ð2Þ NtþTt
¼ Nt�

Tt e"1 or

LnðNtþTt
Þ ¼ TtLnð�Þ þ LnðNtÞ þ "1

where � is the absolute population growth rate, Nt is the po-
pulation size at the survey year t, Tt is the time interval be-
tween year t and year t + Tt, and error 31 is independent and
normally distributed with mean 0 and variance �2

"1
. This

model assumed constant population growth rate over time
and locations.

The second model used was the first-order residual auto-
regressive model (AR(1)):

ð3Þ LnðNtþTt
Þ ¼ TtLnð�Þ þ LnðNtÞ þ ut

utþTt
¼ �Tt

ut þ "2;Tt

In this model, residual error ut is modeled as a first-order
autoregressive process, f is the autocorrelation coefficient.
Because the time intervals were different among observa-
tions (4 to 6 years, with 3 of them 5 years), we used the

equation utþk ¼ �k0ut þ
Xk�1

j¼0

�
j
0"
0
2 in our preliminary analysis

(Houseman 2005). In the analysis, by using �Tt¼5 ¼ � ¼ �5
0

when the time interval is 5, �Tt¼6 ¼ �6=5 when the interval

is 6, and �Tt¼4 ¼ �4=5 when the interval is 4. The error termXk�1

j¼0

�
j
0"
0
2 ¼ "2 when time interval is 5. We treated the error

term equal to 32 when the time intervals were 4 and 6

because of the limited differences between
X5

j¼0

�
j
0"
0
2 and

X4

j¼0

�
j
0"
0
2 and between

X3

j¼0

�
j
0"
0
2 and

X4

j¼0

�
j
0"
0
2. The changes

in the parameter estimates were trivial when compared with
the result by assuming �Tt¼4;5;6 ¼ � under different time in-
tervals. Therefore, we treated f as equal when the time in-
tervals varied among surveys in this study. Error 32 is
independent and normally distributed with mean 0 and var-

Fig. 1. Estimated population density: (a) Clinch River population,
(b) Powell River population. EG, exponential growth model;
AR(1), first-order residual autoregressive model; RW, random-walk
model; RAR(1), growth rate first-order residual autoregressive
model; HEG, hierarchical exponential growth model; BMA, Baye-
sian model averaging.
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iance �2
"2

. �, the parameter in which we are interested, is
very robust to this approximation.

The third model used was the random-walk model (RW):

ð4Þ LnðNtþTt
Þ ¼ TtLnð�tÞ þ LnðNtÞ þ "3

�tþTt
¼ �t þ "4;Tt

where population growth rate �t is modeled as a random-

walk process. The error term
XTt�1

j¼0

"04 ¼ "4 when time interval

is 5, where "04 is the error when the time interval is 1 year.

We treated the error term equal to
X4�1

j¼0

"04 and
X6�1

j¼0

"04 when

the time intervals were 4 and 6, i.e., 4
5
"4 and 6

5
"4, respec-

tively. Errors 33 and 34 are independent and normally dis-
tributed with mean 0 and variances �2

"3
and �2

"4
,

respectively.
The fourth model used was the population growth autore-

gressive model (RAR(1)):

ð5Þ LnðNtþTt
Þ ¼ TtLnð�tÞ þ LnðNtÞ þ "5

Lnð�tþTt
Þ ¼ Lnð�Þ þ ’Tt

½Lnð�tÞ � Lnð�Þ� þ "6;Tt

where population growth rate �t is modeled as a first-order
autoregressive process, and ’Tt is the autocorrelation coeffi-
cient when the time interval is Tt. We treated ’Tt = 4 and
"6;Tt = 36 the same under different time intervals because of
the reasons explained in the AR(1) model. Error 36 is inde-
pendent and normally distributed with mean 0 and variance
�2
"6

.
The fifth model used was the hierarchical exponential

growth model (HEG):

ð6Þ
LnðNtþTt

Þ ¼ TtLnð�tÞ þ LnðNtÞ þ "7

�t 2 Nða; bÞ
a 2 Uðc; dÞ

where error 37 is independent and normally distributed with
mean 0 and variance �2

"7
, �t follows a hierarchical distribu-

tion, i.e., a, the mean of �, is uniformly distributed between
c and d, and N(a, b) is truncated to make sure that � has po-
sitive values.

Population growth rates in both rivers were predicted us-
ing each of the five models separately, then using a Baye-
sian model averaging over the five models together, without
a priori conditioning on model goodness-of-fit (Hoeting et
al. 1999). Population sizes N were expressed as the mean
population densities from the mussel surveys.

Bayesian method and priors
A Bayesian method with Metropolis–Hasting within

Gibbs sampling algorithm was implemented in WinBUGS
1.4 software to estimate the model parameters (Gilks 1996).
Bayesian implementation of the models requires specifica-
tion of prior distributions on all unobserved quantities. Non-
informative uniform distribution priors were used for
parameters � ~ U(0.001, 2), � ~ U(–1, 1), 4 ~ U(–1, 1), a ~
U(0.001, 2), and for variances �2

" ~ U(0.001, 5). Uniform
prior distributions work better as noninformative priors than
inverse-gamma distributions for variance parameters when
dealing with multilevel models (Gelman 2005).

Because inverse-gamma is often used as a noninformative
prior, we also performed analyses using IG(0.001, 0.001) for
variances of �2

"1
, �2

"2
, . . . , �2

"7
in the Bayesian time series

models to test whether the results are sensitive to the priors
(Spiegelhalter et al. 2004; Gelman 2005).

Table 2. Parameter estimates (posterior mean and 95% CI) and corresponding DIC values of the dro-
medary pearlymussel (Dromus dromas) population in the Clinch and Powell rivers.

Clinch River Powell River

Estimates Estimates

Model Parameters Mean 95% CI DIC Mean 95% CI DIC
EG model � 1.08 0.95, 1.19 –3.85 1.01 0.94, 1.06 –24.92

�2
"1

2.05 0.47

AR(1) model � 1.20 0.42, 1.94 –3.71 1.03 0.30, 1.88 –23.02
� 0.69 0.77
�2
"2

2.47 0.81

RW model �t (mean) 1.15 0.52, 1.84 –4.53 1.02 0.60, 1.53 –25.45
�2
"3

1.57 0.51

�2
"4

0.37 0.09

RAR(1) model � 1.16 0.48, 1.87 –4.61 1.03 0.53, 1.64 –23.60
4 0.24 0.29
�2
"5

1.54 0.71

�2
"6

0.40 0.13

HEG model a 1.14 0.15, 1.90 –4.96 1.02 0.30, 1.76 –26.11
b 0.25 0.07
�2
"7

1.52 0.49

BMA �t (mean) 1.14 0.28, 1.88 1.03 0.46, 1.67

Note: CI, credible interval; DIC, deviance information criterion.
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Convergence diagnostics
A critical issue in using Markov chain Monte Carlo

(MCMC), such as the Metropolis–Hasting within Gibbs
sampling algorithm that we used here, is how to determine
when random draws have converged to the posterior dis-
tribution. Here, three methods were considered: monitor-
ing the trace, diagnosing the autocorrelation plot, and
Gelman and Rubin statistics (Spiegelhalter et al. 2004).
In this study, three chains were used. After several sets
of analysis for each chain, the first 20 000 iterations
with a thinning interval of three were discarded, and an-
other 20 000 to ~50 000 iterations were used in the Baye-
sian analysis.

Bayesian model averaging (BMA)
The DIC was used as a model selection criterion to

weight different models in this study. It was also used as
the criterion to select the ‘‘best’’ model in the simulation
study:

ð7Þ
DIC ¼ 2D � bD or D þ pD

Dðy; �Þ ¼ �2loglikelihoodðyj�Þ
pD ¼ D � bD

where D is deviance, a measurement of prediction goodness
for our models; pD is the effective number of parameters in
a Bayesian model. The DIC is a hierarchical modeling gen-
eralization of the AIC (Akaike information criterion) and
BIC (Bayesian information criterion, also known as the
Schwarz criterion). DIC is particularly useful in Bayesian
model selection problems, where the posterior distributions
of models have been obtained by MCMC simulation. As
with AIC and BIC, it is an asymptotic approximation as the
sample size becomes large (Spiegelhalter et al. 2002, 2004).

Following the Bayesian analysis of each model, a BMA
was used to balance model goodness-of-fit and model selec-
tion uncertainty. The posterior distributions of estimated pop-
ulation growth rates from these models were further weighted
based on their DIC to provide our predictive posterior distri-
bution of population growth rates (Hoeting et al. 1999):

ð8Þ
�DICi

¼ DICi �minðDICÞ

weighti ¼
e�2�DICiP
i e�2�DICi

According to the weight of each model, we selected the cor-
responding proportion of the posterior MCMC runs ran-
domly from each model and then combined all the selected
posterior MCMC runs as the model-averaged MCMC. When
weighting the models, models with DDIC larger than 10
were ruled out because of the extremely small weight (Spie-
gelhalter et al. 2002).

Simulation study
A simulation study was designed to test the performance

of the proposed Bayesian model averaging approach and the
model selection uncertainty. The following simulation algo-
rithm was used: (i) estimate population growth rates from
the models using the test species and treat these estimates as
the true population growth rates; (ii) generate population
density data from a Monte Carlo simulation with uncertainty
levels equivalent to the uncertainties estimated from the
original population; (iii) analyze the generated data set using
the five different models (always picking the best model
based on model selection criteria and a model averaging ap-
proach); and (iv) evaluate the uncertainty arising from model
selection and the performance of Bayesian model averaging
by the probability of finding the true model and the relative
estimation error (REE) (for the simulation design, see Ta-
ble 2).

Steps ii through iv above were repeated 200 times to yield
200 sets of estimated population growth rates and population
densities from each model. The sum of mean square errors
(SSE) for population growth rate estimated in year t, b�t,
was calculated as

Fig. 2. Population growth rate over time: (a) Clinch River popula-
tion; (b) Powell River population. EG, exponential growth model;
AR(1), first-order residual autoregressive model; RW, random-walk
model; RAR(1), growth rate first-order residual autoregressive
model; HEG, hierarchical exponential growth model; BMA, Baye-
sian model averaging.
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ð9Þ SSEðb�iÞ ¼
Xk

t¼1

ðb�t;i � �0t;iÞ2

where i indicates the ith simulation run and k is the number
of years with survey data available. The relative estimation
error for estimated population growth rate in year t,
REEðb�iÞ, was calculated as

ð10Þ REEðb�iÞ ¼
X5

t¼1

½ðb�t;i � �0t;iÞ=�0t;i�2

The REE calculated in eq. 10 measures the overall estima-
tion errors, including both estimation biases and variations
in estimates among the 200 simulation runs. Box plots were
used to summarize the REEs derived in the 200 simulation
runs. An estimation procedure with small REE suggests that
it performs well and tends to have smaller error in estimat-
ing current population growth rate.

Model selection uncertainty was evaluated through a
probability of choosing the ‘‘true’’ model as the best model,
based on the lowest DIC value. For example, when the EG
model was used as the true model, in each of these 200 runs,
the simulation algorithm would pick the best model based

on the DIC values (smallest DIC means the best model);
the best model would be recorded in each of the simulation
runs. After the 200 runs, the probability of each model
chosen as the best model was counted. For example, if the
EG model is chosen as the best model in 40 of 200 runs,
then the probability is 20%. After the simulation study, a
best (or robust) modeling approach was selected by compar-
ing the REE estimates of the population growth rates.

Results

Empirical data analysis showed that the hierarchical expo-
nential growth model gave lowest DIC values for both the
Clinch and Powell river populations (Table 2). However,
the DDICs or DIC between the best model and the others,
are between 0.35 and 1.25 for the Clinch River data and be-
tween 0.66 and 3.09 for the Powell River data.

The estimated posterior means of the Clinch River popu-
lation growth rates were larger than 1 in all five models
(Fig. 2a; Table 2). Only when the exponential growth model
was used did the 95% probability credible interval of the es-
timated population growth rate slightly overlap with 1; all
the others largely overlapped with 1. Among the five mod-
els, the HEG models resulted in the lowest DIC values, and
the RAR(1) and RW models also resulted in relatively lower

Table 3. Relative estimation error (REE) of Clinch and Powell River population growth rate estimates (�) and the probability of
being the best model out of 200 simulation runs.

Clinch River Powell River

Estimates Estimates

REE REE

1* 2* Median 5% CI 95% CI P* Median 5% CI 95% CI P*
EG model EG 0.0046 0.0001 0.0361 0.325 0.0019 0.0000 0.0154 0.375

AR(1) 0.0413 0.0007 0.2738 0.130 0.0207 0.0001 0.2146 0.065
RW 0.0747 0.0152 0.1790 0.135 0.0466 0.0109 0.1835 0.155
RAR(1) 0.1072 0.0218 0.2557 0.045 0.0774 0.0157 0.2446 0.110
HEG 0.0841 0.0174 0.2174 0.365 0.0553 0.0104 0.1797 0.295

AR(1) model EG 0.1586 0.0615 0.3084 0.290 0.0208 0.0001 0.1337 0.215
AR(1) 0.0329 0.0009 0.2675 0.125 0.0428 0.0008 0.3166 0.130
RW 0.1389 0.0658 0.2657 0.260 0.0879 0.0255 0.2249 0.285
RAR(1) 0.1574 0.0679 0.2938 0.045 0.1163 0.0317 0.2845 0.125
HEG 0.1551 0.0661 0.2861 0.280 0.0962 0.0239 0.2035 0.245

RW model EG 0.6439 0.2317 4.3956 0.305 0.6131 0.1482 3.2490 0.230
AR(1) 0.6052 0.2734 4.9571 0.105 0.5133 0.1681 2.6877 0.100
RW 0.5304 0.1370 3.1621 0.165 0.5956 0.1275 3.3099 0.285
RAR(1) 0.5146 0.0973 3.3917 0.020 0.6022 0.1407 3.1739 0.085
HEG 0.5906 0.2973 5.2457 0.405 0.6168 0.2029 4.2012 0.300

RAR(1) model EG 0.6274 0.1623 3.5249 0.170 0.7436 0.1880 4.0358 0.255
AR(1) 0.6255 0.2788 3.5387 0.215 0.9124 0.2383 4.4933 0.070
RW 0.5450 0.0976 2.4421 0.235 0.6132 0.1292 4.0410 0.235
RAR(1) 0.5560 0.1209 2.5779 0.025 0.5865 0.1319 3.8471 0.125
HEG 0.6391 0.2206 4.1763 0.355 0.8640 0.1670 4.7091 0.315

HEG model EG 0.7029 0.1958 3.9843 0.285 0.6161 0.0940 3.8571 0.145
AR(1) 0.8542 0.1811 5.4679 0.080 0.7437 0.1472 3.7772 0.070
RW 0.6153 0.1510 3.4636 0.215 0.4596 0.0794 2.8862 0.240
RAR(1) 0.6106 0.1444 3.3187 0.025 0.4345 0.0899 2.5100 0.135
HEG 0.7268 0.2489 4.6225 0.395 0.7967 0.1288 6.5752 0.410

Note: CI, credible interval; 1*, true model used to generate data; 2*, models used to estimate population growth rate from 1*; P*, probability
of being the best model.
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DIC values than the EG and AR(1) models. The resulting
posterior means of the l values from the better models over
time were very close.

The estimated posterior means of the Powell River popu-
lation growth rate were also larger than 1 in all five models
(Fig. 2b; Table 2), but not significantly different from 1 ac-
cording to the 95% credible intervals (Table 2). The HEG
model resulted in the lowest DIC values. In general, the
growth rate of the population in Powell River showed dy-
namic pattern over time, which can be seen from the popu-
lation size changes and from the estimated population
growth rate (Figs. 1 and 2).

Model selection uncertainties from the simulation study
were high. With the Clinch River data, probabilities of de-
termining the true model were 32.5%, 13%, 13.5%, 4.5%,

and 36.5% for the EG, AR(1), RW, RAR(1), and HEG mod-
els, respectively (Table 3). With the Powell River data,
probabilities of determining the true model were 37.5%,
6.5%, 15.5%, 11%, and 29.5% for the EG, AR(1), RW,
RAR(1), and HEG models, respectively (Table 3). HEG
tended to be selected as the best model no matter what the
true models were, and RAR(1), which has the highest num-
ber of parameters, generally had the lowest probability of
being selected as the best model.

The simulation study also showed that the ‘‘true’’ model
tended to give the estimate with lowest REE, which means
that the population estimates are better, but not always the
lowest one (Table 3; Figs. 3 and 4). The REE values cal-
culated from the model averaging approach were low and
very close to the REE calculated when the true model was

Fig. 3. Box plot of the relative estimation error (REE) of population growth rate � of the Clinch River population. From top to the bottom,
the ‘‘true’’ models used in generating the data are as follows: EG, exponential growth model; AR(1), first-order residual autoregressive
model; RW, random-walk model; RAR(1), growth rate first-order residual autoregressive model; HEG, hierarchical exponential growth
model. BMA, Bayesian model averaging.
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used (Figs. 3 and 4). This implies that the model averaging
approach works well in estimating population growth rate.

The sensitivity analyses to noninformative priors indicated
that estimated l (or mean of lt) values and their credible in-
tervals were robust to priors of error variances in the Baye-
sian time series models, when uniform distribution and
inverse-gamma distribution were used. Little difference was
observed, so we did not present the results here. However,
posterior estimates of the error variance values themselves
were not robust to the priors of error variance. In general,
higher lower bounds of the priors of �2

"1
to �2

"7
resulted in

higher posterior means of �2
"1

to �2
"7

.

Discussion
The small differences in DIC among models used to sim-

ulate population growth suggest that more than one model
should be taken into consideration (Spiegelhalter et al.
2002). Spiegelhalter et al. (2002) suggested that models
with DDIC less than 5 from the best model definitely need
to be considered, whereas models with DDIC between 5
and 10 from the best model are substantial. Ignoring these
potentially important models may lead to misinterpretation
of the population trends. Using only the ‘‘best’’ model, with-
out considering other possible models and the uncertainty in
model selection, leads to overconfident inferences and deci-

Fig. 4. Box plot of the relative estimation error (REE) of population growth rate � of the Powell River population. From top to the bottom,
the ‘‘true’’ models used in generating the data are as follows: EG, exponential growth model; AR(1), first-order residual autoregressive
model; RW, random-walk model; RAR(1), growth rate first-order residual autoregressive model; HEG, hierarchical exponential growth
model. BMA, Bayesian model averaging.
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sions that are riskier than expected (Draper 1995). In this
study, the credible intervals of population growth rate from
the exponential growth (EG) models were obviously nar-
rower than those from the other models and, therefore, over-
confident compared with the BMA results. A ‘‘best’’ model
can always be found based on model selection criteria, but
the simulation study demonstrated that because of the inher-
ent model uncertainty, the ‘‘best’’ model may well not be
the ‘‘true’’ model. Bayesian model averaging provides a co-
herent mechanism to account for this model uncertainty.
When dealing with real observation data for which the state
of nature is unknown, comparison between the BMA and
commonly used individual models such as the EG model
protects against overconfidence in the results (Draper 1995;
Katsanevakis 2006).

Exponential growth models have been widely used in an-
alyzing population abundance and (or) density data (Hilborn
and Walters 1992). There was very limited population trend
and growth rate analyses for all the endangered mussel spe-
cies in the Clinch, Powell, and other rivers (J. Jones, unpub-
lished data). The hierarchical exponential growth model and
other colored-noise models have been suggested for investi-
gating endangered freshwater mussels, as well as other
aquatic invertebrates and fish species, whose recruitment
and population status vary over time (Heino et al. 2000; Pe-
terman et al. 2003; Wichmann et al. 2003).

For the current populations of dromedary pearlymussel in
the Clinch and Powell rivers, the estimated 95% credible in-
tervals of population growth rates from the model-averaging
approach overlap with value 1, although the posterior mean
values of all the models were higher than 1. This indicates
that there is not enough evidence to support the hypothesis
of populations increasing. The status of the population in
the Powell River is more pessimistic than that in the Clinch
River, which showed a lower population density, a more dy-
namic pattern of population growth rate, and a very limited
overall population increase with high uncertainty.

Investigated populations of the dromedary pearlymussel
were distributed at Swan Island, Brooks Island, and Kyles
Ford in the Clinch River and Buchanan Ford, McDowell
Shoal, and Bales Ford in the Powell River, where local
demes have fluctuated at relatively low levels of abundance
over the last 25 years (Wolcott and Neves 1994; Ahlstedt
and Tuberville 1997; Ahlstedt et al. 2005). To understand
and improve the population status at other locations in the
Clinch and Powell rivers, further ecological studies on local
habitats and environmental conditions are suggested.

Our knowledge of these endangered freshwater mussels is
still limited, especially regarding the influence of biotic and
abiotic factors on their life history, such as the effects of
water discharge and fish host usage on reproductive success.
We still lack knowledge to proceed to more mechanistic ap-
proaches, such as individual-based models (IBM), for under-
standing mussel population dynamics. Field observations
and monitoring experiments are currently underway to pro-
vide information that can be used to simulate the dynamics
of these species using mechanistic models (J. Jones, unpub-
lished data). For example, a coupled biological–physical
model or a model with habitat and spatial heterogeneity
would help to further understand and protect these mussel
species (Werner et al. 2001; Grimm et al. 2005a, 2005b).

Hierarchical Bayesian methods are especially applicable
to small-area estimation problems, such as this one (He and
Sun 1998). However, we also realized that HEG resulted in
high variance of relative estimation error, which means that
in cases when the goodness-of-fit is low, it can result in a
highly biased result. Comparison with the other models is
still suggested. The exponential growth model is widely
used because of its simplicity, and in this study, both field
data analysis and simulation study showed that it seems ro-
bust to noise. Random noise caused by environmental varia-
tion can be more important than the ‘‘true’’ population
dynamic pattern. This is especially true and crucial for en-
dangered species (Petchey 2000; Schwager et al. 2006). The
corresponding risks of extinction are different when different
models are used (Halley and Kunin 1999; Morales 1999;
Schwager et al. 2006). Colored noise can decrease or in-
crease the extinction risk (Heino et al. 2000; Wichmann et
al. 2003), and the model structures used in generating the
colored noise are relevant (Morales 1999; Wichmann et al.
2005). For these endangered freshwater mussels, because in-
sufficient data were available to estimate population size,
risk of population extinction can be evaluated by using the
predicted trajectory of the density from different models to
obtain an estimate of local extinction that could be couched
in the probability of finding no mussels in a sample of size
n. For increased precaution against extinction, models such
as AR(1), RAR, and RW are highly recommended to be in-
corporated into the model-averaging framework because
they are better at capturing environmental noise than the
EG model. We recommend a simulation study for estimating
population growth rate of any endangered species, as this
would lower the risk of misinterpreting population status
and thus allow better management of the rare biological re-
source.

High model selection uncertainty implies that estimating
population growth rate and evaluating the population status
based on one single model, or even one ‘‘best’’ model, is of
high risk. Because model selection uncertainty is high, the
model averaging approach is recommended for dealing with
growth rate estimation and population trend analysis of en-
dangered mussel populations. The model averaging ap-
proach balances the needs for best models and for model
selection uncertainty and minimizes the risk of underesti-
mating or overestimating population extinction risk (Morales
1999; Johnson and Omland 2004; Schwager et al. 2006).
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